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We consider a simple gasdynamic model of acceleration and compression of a 
plane material layer irradiated by a laser. We establish the conditions under 

which a limiting isentropic compression takes place, and investigate its stability. 

We also consider the problem of transfer of the laser radiation energy to the ac- 
celerated layer. 

A number of experimental and theoretical investigations (see e. g. [ 1 - 31) 
dealt with the problem cf transfer of the mechanical recoil impulse to the ma- 
terial target, the impulse resulting from the evaporation and hydrodynamic scat- 
tering of the material acted upon by the laser radiation. It is also known that at 

sufficiently high radiation flux densities, compression waves and in particular 
shock waves, appear in the nonvaporized material. It is clear that, if the amount 

of vaporized mass is comparable with the total mass of the target, then the non- 
vaporized part can be speeded up to velocities approaching that of the flow of 

the vaporized matter and, under certain conditions, compressed to the densities 
exceeding appreciably the density of the normal, condensed state. This effect 
of accelerating low-mass solid targets is of interest in connection with a general 
problem of accelerating small particles [4] to velocities of IO5 to 107 cm/set 
and higher. 

1. Let us consider a plane one-dimensional problem of the action of laser radiation 
with the flux density of q. , on a plane layer of condensed matter with the initial mass 
per unit area equal to M . The process of accelerating the layer is determined by the 

parameters of the material at the vaporization boundary separating the condensed and 
the gaseous phases, and for this reason the equations of motion must include the gasdyna- 
mic laws of conservation of mass flux, impulse and energy at this boundary. 

In accordance with [Z] , in the present case we have 
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POD = P (v + u + D), ~0 = P + POD (0 -t 4 (1.1) 

where pO and u (U > 0) are the density and velocity of the layer, p0 is the pressure in 
the condensed phase, D is the velocity of the vaporization boundary relative to the lay- 
er, u is the velocity of the gas at the vaporization boundary, the direction of irradiation 
is from right to left, u > 0 if the gas is moving to the right and u < 0 otherwise ; 
p, p and E are the pressure, density and specific internal energy of the gas at the vapo- 
rization boundary, Q is the specific bond energy of the material, y is the adiabatic 
index and qO* ’ IS the radiation flux density at the vaporization boundary. 

The equations describing the motion of the nonvaporized part of the layer of mass M 
have the form 

M$=p+p,D(v+u), d$=-ppoD (1.2) 

The system (1. I), (1.2) is a general one, and independent of the character of the gasdy- 
namic motion of the vaporized material, i.e. it is independent of the mode of vaporiza- 

tion. 

In the present case the third equation of (1.1) which expresses the law of conservation 

of energy at the discontinuity (vaporization boundary) can be reduced, with the help of 
the first two equations of (1. l), to the form 

40 *_qh+&$C) 
I (1.3) 

where qh is the hydrodynamic energy flux of the vaporized material. Thus, unlike the 
equation in [2], the present equation contains a term describing the transfer of radiation 
energy to the kinetic energy of the layer. 

The complete problem of acceleration of the nonvaporized part of the layer must in- 

clude the hydrodynamics of the dispersing gaseous phase, i. e. the system consisting of 

the first two equations (1.1) - (1.3) must be supplemented, in general, with a system of 
hydrodynamic equations which take into account the absorption of laser radiation and 
electronic heat conductivity. Such a problem can only be solved accurately by numer- 
ical methods. We can use the equations given above to study a simple physical model, 
which will enable us to obtain the basic relations describing a process by which the laser 

radiation energy is transferred to the kinetic energy of the layer. 
Indeed, let us assume, that in a coordinate system attached to the vaporization bound- 

ary the vaporization takes place by a steady state mechanism, i.e. the quantities 11, p, 
D, q* and u + u + D are time independent. In this case the following Jouguet con- 
dition holds [5] : 

v + u -t D m= c :: (yp / p)‘,z 

where c is speed of sound at this boundary. Under this condition the system (1.2) gives 

(with P < p. and P i p > Q) 

n/r I M,, - poDt, 7J, -_ -P_ 111 >!k (1.4) 
f&S ill 
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where T is the kinetic energy of the condensed part of the layer and E,* is the energy 
transported to the vaporization boundary. From the third and fourth relation of (1.4) we 

obtain 

The function 70 (t) = ‘r’l (MO / M) attains its maximum value when M / M, = 0.2 
and is then equal to qornax = 0.64 (1 - 1 / y”) z 41% (y z 5 13). 

Thus, qO = 41 o/o is the limiting value of the coefficient of conversion of the laser 
radiation energy into the kinetic energy of the layer. This value can be attained when 
all radiant energy is delivered to the hydrodynamic discontinuity (q,,* = q,,). This is 
not, however, realized in practice. Some of the energy is consumed in heating the outer, 
vaporized part of the layer. In the plane case this screening effect causes a certain am- 

ount of the vaporized matter to move in the same direction, as the condensed part of the 

layer. 

2. The authors of [6] give the results of a numerical analysis of the limiting isen- 
tropic compression of matter under the action of pulsed laser radiation. Realization of 
such a mode involves a laser pulse of specified profile with respect to time. 

In the present paper we consider an analytic model of isentropic compression of a plane 

layer of matter, We obtain the spatio-temporal distributions of the hydrodynamic para- 
meters within the layer, and this enables us to formulate the requirements concerning the 
temporal form of the pressure impulse I_‘~ (t) and, consequently, the form of the laser 

radiation pulse necessary for the realization of the isentropic compression mode. 

Let the initial state of the layer of thickness x0 be specified by the parameters pO and 

%where c,, is the speed of sound. The acceleration and compression of the layer under 
the action of a pressure impulse will be described in the acoustic approximation, without 
taking into account the dissipative processes. In this case the system of hydrodynamic 
equations has the form [S] 

; v+ L &c 1 -(v+c)d;[v+~c 
1 T--1 _ 

=o, l_l=z g-1 (c - co) (2.1) 

Here the coordinate z > 0 is measured from the inner boundary of the layer, while 
u (x) and c (2) are the velocity of the medium and speed of sound at the point 2. 

The above equations describe the mode of compression without shock waves. For this 
reason the characteristic time dimension of the problem is t, = z,,/cO, and it corresponds 
to the time of arrival of the first perturbation at the inner boundary. Substituting the 
second equation of (2.1) into the first, we obtain 

ac ___ [Y+1 2 
at r-_l”- 

& 

y--l co. 1 z = 
0 

We shall seek the solution of (2.2) in the form 

c = c,c (h), h= x 
X0(1 - t/to) 

The value A = 1 corresponds to the trajectory of the first perturbation. If a continuous 

solution of the form (2.3) exists, then it will correspond to the isentropic compression of 
the layer, since the discontinuities, i. e. the shock waves, can appear behind the bound- 
aries of the layer of thickness 2O only when t > t,. 

Substituting (2.3) into (2.2), we obtain an equation, the nontrivial solution of which is 
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The expression for the remaining hydrodynamic parameters are obtained with the help 
of the well known hydrodynamic relations 

(2.4) 

where at the given instant of time t 

x0 (1 - t i t,,) 6 x < Xl (t) 

Here x1 (t) is the trajectory of the outer boundary of the layer, and can be found from 
the equation dx, I dt = - v (2,). 

Since x1 = &z,, (1 - t / to), we obtain the following relation for A,,: 
Al 

I ; --= ( \ dh ‘I exp - LI-/L(h) J’ 
i 

u(h) = $ 

which, together with the second relation of (2.4) gives 

x1 (q = x0 ;*[[1 - ,)z;(Y+l) - & (1 - tjl (2.5) 

It can be shown that the solution obtained which contains the trajectory .Q (t) of “a 

piston”, corresponds to the situation in which the perturbations generated by the piston 
converge at the inner boundary of the layer simultaneously, at the time t = to. Indeed, 

the law of motion x1 (t) can be obtained in the manner analogous to that in fl], from 

the equation Xl (1) 
-rlt ’ 

XI (t) - 2’1 (t) dt 

VI(t) + c (51) r 1’1 t G(Q) + dc + tlpl 
or 

Integration of the last equation gives (2.5). 
Next we shall show that the solution of the present problem in the two-dimensional 

case, with the law of motion of the piston given, can be obtained using the method of 
characteristics, with the help of the general integral of the initial equation (2.2) 

where (p (c) is a function which can be determined using the given law of motion ofthe 

piston. However, the method of solution developed in the present paper can be general- 
ized to the cases of the spherical and cylindrical geometries, and for these cases the 
method of characteristics cannot be used. Using the relations (2.4), we obtain the follow- 
ing expressions for the hydrodynamic parameters at x = x1 (t) 

-(.f-lL(Y+l) ) i” _ 
[-‘II 

(2.6) 



Acceleration, compression and stability of a plane layer of matter 433 

The last expression in (2.6) defines the temporal form of the pressure impulse at the 
outer boundary of the layer, at which the compression mode is nearly isentropic, Using 
(2.6) we can find the temporal form of the laser impulse which is necessary for the re- 

alization of such a mode,Indeed, the magnitude of the hydrodynamic pressure p. (t) 
transmitted to the region of dense matter under the action of radiation is connected with 
the radiation flux density q,, (t) and the speed of sound cg (t) , by the expression 121 

PO tt> - 90 (6 i %I (0 (2.7) 
From (2.6) and (2.7) we find 

Q0 (t) - (1 - t / t,)-(sWW (2.8) 

which differs somewhat from the corresponding expression given in [5] where q. (t) - 

(1 - t / ~o)-3u!(?+l). 

The last expression can be obtained under the assumption that the dynamics of the 

dispersion of the outer part of the layer (corona) and, consequently, the inward transmit 
sion of the pressure impulse, depends on the characteristic density p near which the elec- 

tronic heat flux is transformed into the hydrodynamic flux of the dispersing corona 

p - pc2, q - pc3, p - qQ, q - (1 - t / t*)-3YI(Y+l) 

From (2.4) it follows that when t -+ t, , then the pressure, the density, the work done 
above the layer and the kinetic energy, all tend to infinity. Obviously, the physical quan- 
tity characteristic of the process is the ratio of the kinetic energy of the layer to the to- 

tal work done above this layer. This quantity naturally remains finite when t -+ t, , 
and is equal to 2y/(3y - 1) I= 83?6 (y =: 5/3). 

9. Let us investigate the stability of the solutions (2.4) obtained, when the boundary 
or the initial conditions undergo small perturbations, In the present case it is sufficient 

to investigate the behavior of the perturbations affecting one of the hydrodynamic quan- 
tities. The remaining ones can then be calculated by means of the thermodynamic re- 

lations. Let us consider one-dimensional perturbations in the speed of sound. Let 

es = c i- A (51 t) (3.1) 

where c is the unperturbed solution given by (2.4). Substituting (3.1) into (2.2) and 
linearizing in the usual manner, we obtain 

(3.2) 

which can be solved when either the initial conditions A (x,0) = A, (x) or the bound- 
ary conditions A, (0, t) = A, (t) are given, Substituting c from (2.4) into (3.2) and 
introducing the variable 8 = 1 - t / t,, we reduce it to the form 

ah A 
-+ +lnH 

The general solution of (3.3) is 

A@, t)= 

(3.3) 

(3.4) 

where CD is an arbitrary function the form of which is determined by the boundary or 
the initial conditions. 
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The general form of (3.4) already suggests that the arbitrary perturbations increase 
with time on the first characterisitcs faster than the basic solution. Indeed, substituting 

into (3.4) 5 = x0 (1 - tl to), we obtain 

A (5, t) == 
(D (i / 50) 

x0 (1 - t / to) 

while the maximum rate of increase of the basic solution is, according to (2.4) c - 

(1 - 1 / to)(Y-r)/(~+i)_ Th e effect of the perturbation on the character of the motion de- 
pends on the sign of the perturbation. let us recall the interpretation and the character 

of the Riemann solution of which (2.4) is a particular case. The fastest-moving particles 
are those at the piston, their velocity falls in the direction of motion and reaches the 
value equal to the initial speed of sound in the medium, at the first characteristic. The 

pressures and the density are distributed analogously (see (2.4)). On approaching the 
point of intersection of the characteristics the “piston” catches up with the first charac- 
teristic and the curvature of the front increases. Finally, after crossing the characteris- 

tics the solution becomes multivalued and invalid, and is replaced by a discontinuous 
solution. In the present case all quantites become divergent at this particular moment. 

bet us now investigate the various forms of the initial and boundary conditions. 

3.1, Initial spatial distortion of the speed of sound. This situation 
can occur in practice when the properties of the medium vary slightly along the coor- 

dinate (e. g. temperature variation along x), A0 (0, r) q = CLC,, cos kox, a-=zg 1. 
Then the arbitrary function can be found from the condition 

+ 0 (2) = UC, cos k”Z 

and in this case the solution is obtained in the form 

A(x,t)= acocos ( I~~,to)(~- ij-l 

When t = to, this expression diverges and, since the perturbations at any point envei- 

aped by the motion grow faster than the unperturbed solution, their ratio A / c also 

becomes divergent when t + to. The solutions (2.4) - (2.6) are unstable and the ran- 

dom perturbations in this model lead to formation of shock waves before maximum com- 
pression is reached. 

3.2. A small perturbation is given at the piston trajectory, 

proportional to the unperturbed solution, A, (z, t / to) = ac, (t / to), 

a < 1. In this case the solution is 

A(z, t) = 
UC0 2 

L ( l--t/to -r+1 
1 + (+I--1)x 

)I 

-2.T' -1) 

50 (1 - 1 /to) 

from which it follows that on the first characteristic A/c .- (1 - t / to)-1, i.e. it 

diverges as t + to. 

3.3. Initial perturbation at the piston finite at the initial 
moment and rapidly decreasing with time, A,(z, t / to) = ac,(t / 

to) (1 - t i w, n > 1, CI .=g 1. The complete solution is 

A@, t) = ,I+ (r--)x -(Y+l)(W1)/(-f-l) 

2x0(1 -t/to) 

In the last two cases the solution remains continuous despite the fact that the ratio A/c 
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diverges on the first characteristic. This results from the fact that the velocity of the 
medium increases near the first characteristic, with the particles “escaping” from the 
piston. Apparently this type of stability leads to the transformation of the solution (2.4) 
into another, Riemann-type solution, different from the unperturbed solution, in which 
the characteristics either intersect at a later instant, or do not intersect at all at a gene- 

ral point. 
When an attempt is made to realize, in practice. a mode resembling (2.4), small cha- 

otic perturbations of different sign and amplitude appear invariably in the initial and 
boundary conditions. These perturbations are caused by the deviation of the real con- 

ditions from ideality, The development of perturbations of the same sign as the velocity 

of the piston imparts an acceleration to some particles, and those of the opposing sign 

retard other particles. Thus the growth of perturbations speeds up the appearance of am- 
biguity in the solutions, i. e. the formation of discontinuities. The solutions (2.4) are 

valid on the initial interval of the motion. The presence of small chaotic perturbations 
causes subsequent appearance of the shock waves. Apparently this argument also holds 
for other Riemann-type solutions leading to infinite compression; in particular the solu- 

tions of this type obtained by numerical methods [6] can also become unstable in the 
sense indicated above. 
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